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FORECASTS OF FUTURE PRICES, UNBIASED MARKETS,
AND “MARTINGALE” MODELS*

BENOIT MANDELBROT T

I. INTRODUCTION AND SUMMARY OF
EARLIER INVESTIGATIONS

HE behavior of speculative prices
I has always been a subject of ex-

treme interest. In most past work,
including [6], the emphasis has been on

the statistical behavior of price series-
themselves. The present paper will at-

tempt to relate the behavior of prices to
more fundamental economic ‘‘triggering”’
quantities. This effort will constitute a
simplified but detailed application of cer-
tain ideas current in economic theory,
concerning the roles of anticipation and
of expected utility.

My findings will depend upon both the
behavior of the underlying “triggering”
variable and the relationship between the
“triggering” variable and price. It is pos-
sible to develop models where the price
series follows a pure random walk. On the
other hand, it is also possible to conceive
of models where successive price changes
are dependent so that prices do not follow
a pure random walk, but where the na-
ture of the dependence is such that it

* An earlier version, entitled “Speculative Prices
and a ‘Martingale’ Stochastic Model,” was privately
circulated in February, 1964, and was presented
December 29, 1964, to the Annual Winter Meetings
of the Econometric Society, held in’ Chicago. I am
greatly indebted to Professor Eugene F. Fama, with
whom I repeatedly discussed the draft of this paper,
and who helped clarify the presentation of my ideas
on this subject; the present text also incorporates
changes suggested by the comments of Professor
Charles Ying.

T Research staff member, IBM Watson Research
Center, Yorktown Heights, New York, and Insti-
tute Lecturer, Massachusetts Institute of Technolo-
gy, Cambridge, Massachusetts.

cannot be used to increase expected prof-
its. In the terminology of probability,
this is expressed by calling price a “mar-
tingale.” Before exploring these intri-
guing possibilities, however, it is appro-
priate to begin with a brief review of the
current state of affairs in the field.

In examining prices alone, one auto-
matically chooses to consider all other
quantities as being unknown, and their
effects on the development of the price
series Z(£) as being random. The stochas-
tic mechanism that will generate the
future values of Z may, however, depend
upon its past and present values. Insofar
as the prices of securities or commodities
are concerned, the strength of this de-
pendence has long been of concern to
market analysts and certain academic
economiists, and remarkably contradic-
tory conclusions have evolved.

Among the market analysts, the tech-
nicians claim that a speculator can con-
siderably improve his prospects of gain
by interpreting correctly certain telltale
“patterns”. that a skilled eye can help
him extract from the records of the past.
This naturally implies that the future
development of Z(¢) is greatly, though
not exclusively, influenced by its past,
and also that different traders, concen-
trating upon different portions of the
past record, should make different esti-
mates of the future price Z(¢ + T).

Some academic economists, on the
other hand, like to emphasize that, even
if successive price changes were generat-
ed by tossing a fair coin, there would be
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UNBIASED MARKETS AND “MARTINGALE” MODELS

spurious ‘“patterns” in the price series.
One should therefore expect that more
elaborate probabilistic generating mech-
anisms could account for some other pat-
terns as well, and possibly even for all
patterns. As a result, the basic attitude
of economists is that the significance of
any pattern must always be evaluated in
the light of some stochastic model. Econ-
omists also tend to be skeptical of sys-
tematic trading schemes (see, e.g., Sec.
VI of [6], and its continuation in [4]).

The study of such stochastic models of
price behavior is not at all new, since
many of the fundamental techniques of
random processes happen to have been
first considered in the context of econom-
ics, in 1900, by Louis Bachelier [1]. How-
ever, it is only recently that one has be-
gun to feel the influence of [1] upon the
theory of price variation and upon its
empirical verification. (See [2] for a use-
ful collection of references.)

Bachelier conceived several models,
each with a different level of complexity.
His most general and least developed
model is that the present price is an un-
biased estimator of the price at any mo-
ment in the future. Bachelier’s second-
level model asserts that, whichever ¢ and
T, the increment Z(t + T) — Z(}) is in-
dependent of the values of Z up to and
including time #; this assumption is best
referred to as the “random walk.” As to
the third level, which was the only level
to be fully developed, it asserts that
Zt+ T) — Z(¥) is a Gaussian random
variable with zero mean and a variance
proportional to T (“Brownian motion”’).

This Gaussian model is, however,
clearly contradicted by the facts [6].
Thus, from the viewpoint of the study of
each speculative time series as if it were
alone in the world, it is natural to pro-
ceed to independence of successive price
increments combined with a distribution
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other' than the Gaussian. In searching
for a generalization, it would be desirable
to preserve in part a basic ‘“‘self-similar-
ity” property of the normal law: If
one divides by T-!/2 the increment of a
Gaussian process over a time increment
T, one obtains an expression 7172
[Z(¢t 4+ T) — Z()] that has a distribution
independent of 7. The generalization of
this property was discovered by Paul
Lévy, who showed that, if 0 < a < 2
and the homogeneity exponent 3 is re-
placed by the larger exponent 1/a, one
obtains a family of probability laws now
called “‘stable Paretian.” They have the
property that their population variance
is infinite; this feature was felt by some
to be shocking, but it does not make
them ‘“‘improper” in describing natural
phenomena (see [5]).

In my paper, “The Variation of Cer-
tain Speculative Prices” [6], it is demon-
strated that a model of independent
stable Paretian price increments ac-
counts surprisingly well for many prop-
erties of the extremely long price series
that are provided by market records.
This work, and its continuation and
elaboration by Fama [3], has encouraged
me to strive for an even better model.

The marginal distribution of price
changes will be Paretian, but now the
increments need not be independent, as
was assumed by the ‘‘random-walk”
assumption of [6].! The sample variation
of price will exhibit a variety of striking
“patterns,” but these could be of no
benefit to the trader, on the average.
Another feature of the price series to be
described is that they are generated by
an explicit economic model.

1 To be perfectly honest, an assumption of inde-
pendence will creep in by the back door, through the
hypotheses that will be made concerning the inter-
vals between changes of weather. It would be easy

to make less specific probabilistic assumptions, but
very hard to carry out their implications.
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The stochastic processes Z(t) to be ex-
amined are special cases of ‘“martin-
gales,” a concept that will now be de-
fined: Let ¢, ¢ + T, and ¢ designate, re-
spectively, the present instant of time,
a future instant, and an arbitrary set of
past instants. Z(¢) will be a martingale if
E[Z(t + T), given the values of Z(f) and
of all the Z(#2)]= (¢).

One particular feature of this defini-
tion is that one has E[Z(t 4 T), given
the wvalue of Z(f)] = Z(¢). However,
much more is implied in the martingale
equality, namely, the statistical inde-
pendence between future anticipations
and past values of Z: Thus, to define a
martingale, one may begin by postulat-
ing that it is possible to speak of a single
value for E[Z(t + T) | Z(#)], without hav-
ing to specify by which past values this
expectation is conditioned. In a later
stage, one will add the postulate that
E[Z¢+ T)| Z(#)] = Z(¢). This two-stage
definition should underline the central
role that martingales are likely to play in
the problem to which the present work
is devoted: that of the usefulness of a
knowledge of past prices for purposes of
forecasting.

It should also be stressed that the dis-
tribution of Z(¢t 4 T), conditioned by
known values of Z(f) and of the Z(t?),
may very well depend upon the past
values Z(#9): the expectation alone is
unaffected by the Z(#?).

The application of martingales to price
behavior gives meaning to the loose idea
that prices are somehow ‘‘unbiased.”
That idea goes back at least to Bachelier,
in whose mind ‘‘unbiasedness” meant
that price determination in active specu-
lative markets is governed by a linear
utility function.?

Interest in martingales among pure
probabilists is such that an immense
variety of martingale processes has been
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described. If we dealt with a single eco-
nomic series, namely the price, the
choice among all this wealth of possibili-
ties could only be directed by purely
mathematical criteria—which are a no-
toriously poor guide. Hence, the present
step beyond the random walk was only
undertaken within the context of a “fun-
damental analysis,” in which the price
attempts to follow something that can be
described as ‘““value”: That is, the present
price Z(#) is a function of past prices, and
of the past and present values of the
exogenous trigger Y (¢). In the present
paper, the process generating value will
be such that, as T increases, the expecta-
tion of Y (¢t + T) will tend fairly rapidly
toward a limit. If that limit is taken as
the present price Z(f), one will achieve
two things: (1) price and value will occa-
sionally coincide; (2) price will be gener-
ated by a martingale stochastic model in
which the present Z(¢) is an unbiased
estimator of Z(¢ 4 T); moreover, for
large enough values of T, Z(¢) is an un-
biased estimator of Y (¢ + T).

If, however, the process generating ¥
had other properties, the forecast future
value E[Y (¢ + infinity)] need not be a
martingale. An example to the contrary
is given in Section IIG. Therefore, the
fact that forecasting of the value leads to

2 Let us now consider, however, some non-linear
function F of the price; the expectation of
F[Z(¢ + T)] will not be in general equal to the pres-
ent value F[Z(#)]. This means that, if our specula-
tor’s private utility function is not linear in Z, play-
ing on Z may be advantageous or disadvantageous
for him. Moreover, individual speculators need not
be led by the same utility as the market considered
as a whole: They may, e.g., either seek or avoid a
large dispersion of possible future prices Z(¢ + T).
Even in the case of a martingale, an increasingly de-
tailed knowledge of the past may be useful for such
purposes.

Similarly, if log Z is a martingale, playing on Z
will be advantageous to speculators having a linear
utility function. The fact that unbiasedness is linked

to a choice of scale for Z is well known to mathemati-
cal statisticians.
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a martingale in the prices tells us some-
thing about the structure of the value as
well as the structure of the market mech-
anism. If forecasted value does not follow
a martingale, prices could follow a mar-
tingale only if they do not follow value.

The above considerations are linked
with the oft-raised question of whether
one can divide the speculators into sever-
al successive groups, as follows: the mem-
bers of the first group know only the
present and past values of Z; the mem-
bers of the next group also know the
present and past values of the single
series ¥, and know how the price will
depend upon the variation of Y, the
members of further groups also know the
temporal evolution of various series that
contribute to ¥, and again know how
these series affect the price. In the model
of ¥ to which the present paper will be
devoted, there is no advantage, on the
average, in knowing anything beyond the
present Z(¢).?

II. THE FORECASTING FUNCTION OF EX-
CHANGE MARKETS AND THE PERSIST-
ENCE OF PRICE MOVES FOR AGRICUL-
TURAL COMMODITIES

A. THE PROBLEM

The present section will be devoted to
the series of equilibrium prices for an
agricultural commodity. Consideration
of fluctuations around this series, due to
temporal scatter of supply and demand,
will be postponed to Section ITI. Here,

3 Martingales are naturally closely related to other
techniques of time-series analysis that involve con-
ditional expectations, such as regression theory, cor-
relation theory, and spectral representation. In
particular, if Z(#) is a martingale, its derivative is
spectrally “white” in the sense that the covariance
C(7) between Z'(f) and Z'(¢ + 7) vanishes if » = 0.
The expected value of the sample spectral density
of Z'(t) will therefore be constant, that is, independ-
ent of frequency. If a market can associate such a
series Z(#) to the exogenous ¥ (¢), this market can be
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the price Z(#) will be equal to the expect-
ed value of the future crop, which in turn
only depends upon past and future
weather, according to the following rules:
(1) weather can only be good, bad, or in-
different; (2) one is only interested in
deviations of the price from some
“norm,” so that it is possible to neglect
the price effects of indifferent weather;
(3) when there were g good days and b
bad days between the moments ¢ and ¢”
within the growing season, the size of
crop will have increased by an amount
proportional to & — g; (4) under the con-
ditions of rule (3), the “value” Y (¢) of a
unit quantity of the crop will have de-
creased by an amount proportional to
b — g. The final rule (5) runs as follows:
At any instant £, there is a single price of
a unit quantity for future delivery, equal

to
lim E[Y(t4T)].

T—®

Units will be assumed so chosen that price
will increase by 1¢ when the ultimate ex-
pected value Y (¢) increases by the effect
upon the crop of one day’s bad weather.
These rules are very simplified,* and they
do not even take into account the effect
upon future prices of the portions of past
crops that are kept in storage. The total
problem is so complex, however, that it

called a “whitener” of the derivative ¥’ (f). However,
one must keep in mind that spectral methods are
concerned with measuring correlation rather than
dependence. Spectral whiteness expresses lack of
correlation, but it is #of synonymous with full inde-
pendence, except when the joint distributions of
prices at different times are Gaussian, which is surely
not the case for the examples I constructed for this
paper. In fact, whiteness is even weaker than the
martingale identity.

4Tt is really acknowledged that they would have
been made much more realistic if they referred to
log Z instead of Z, and similarly to the logarithms
of other quantities. This transformation was avoided,
however, in order to avoid burdening the notation.
The interested reader will readily make the trans-
formation by himself.
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is best to begin by following up each of
its aspects separately.

Our rational forecast of ¥ naturally
depends upon the weather forecast, i.e.,
upon the past of ¥, the probability dis-
tribution of the lengths of the weather
runs, and the rules of dependence be-
tween the lengths of successive runs.

The crudest assumption is to suppose
that the lengths of the runs of good, bad,
or indifferent weather are ruled by statis-
tically independent exponential variables
—as is the case if weather on successive
days is determined by independent ran-
dom events. Then the future discounted
knowing the past is exactly the same as
the future discounted 7o¢ knowing the
past; in particular, if good and bad days
are equally probable, the discounting of
the future will not change the prices
based upon the present crop size. This
means that the process ruling the varia-
tion of Z(¢) is the simplest random walk,
with equal probabilities for an increase
or decrease of price by 1¢.

Our “intuition” about the discounting
of the future is of course based upon this
case. But it is not necessary that the ran-
dom variable U, designating the length

of a good or bad run, be exponentially

distributed. In all other cases, some de-
gree of forecasting will be possible, so
that the price will be influenced by the
known structure of the process ruling the
weather. The extent of this influence will
depend upon the conditional distribution
of the random variable U, when it is
known that U > 4. The following subsec-
tion will therefore be devoted to a discus-
sion of this problem.

B. THE DISTRIBUTION OF RANDOM VARIABLES
CONDITIONED BY TRUNCATION
Ezxponential random variables. ~To be-
gin with, let us note that the impossibili-
ty of forecasting in the exponential case
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can be restated as being an aspect of the
following observation: Let U be the ex-
ponential random variable for which
P(u) = Pr(U > u) = exp(—bu), and let
U(h) designate the conditioned random
variable: U, conditioned by U > % > 0.
Bayes’s theorem then yields the follow-
ing results: If # < %, one has Pr[U(h) >
u) = 1;if u > h, one has

PAU(R) >u) =Pr(U > u|U > k)

_exp(—bdu)
=exp(=0h) expl —d(u—1n)]l.

This means that U(k) — % is a random
variable independent of %, but having a
mean value 1/b determined by the origi-
nal scale of the unconditioned U.

Hyperbolic random variables.—Assume
now that U follows the hyperbolic law,
made familiar by Pareto’s income dis-
tribution, which depends upon the two
positive parameters o and a as follows: If
# < o,onehas Pr(U > u) = 1;ifu > o,
one has Pr(U > u) = (u/c)~a. In the
present case, Bayes’s theorem yields the
following results: If % < o, one has
PrU) > ul = Pr(U > u);ife <u<
h, one has Pr[U(h) > u] = 1; finally, if
o <k <u, one has

Pr(UCk)Zul=Pr(UZ2u|U=h)

_(u/o)™ —a

=y (T
It is clear that the various typical values
of U(%), such as all quantiles or the ex-
pectation, are proportional to 4. For ex-
ample, g~/ gives the value of U (%) that
is exceeded with the probability ¢. As to
the mean of U(k), it is finite only if
a > 1;in that case, one has

E[U(h)]=fh°°ahau—adu=—~——(a“_”1).
Thus, E[U() — & = h/(a — 1) =

E[U(#)]/a, which is greater or smaller
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than % according to whether a is smaller
or greater than 2; if a = 2, E[U(k) —
h) = h.

As to the marginal probability that
h < U < h -+ dh, knowing that 2 < U,
it is equal to ak~“™dh/h~ = adh/h,
which decreases with 4.5

An important property of the present
conditioned or truncated variable U (%)
is that it is scale-free in the sense that its
distribution does not depend upon the
original scale factor o. One may also
say that the original hyperbolic law is
self-similar. Conversely, this property
characterizes the hyperbolic law,% and

5 In order to fully assess the above findings, it is
good to contrast them with the result valid in the
Gaussian case. As a simplified intermediate case,
consider the random variable U for which Pr(U >
u > 0) = exp(— bu?). Then the arguments devel-
oped above show that, for # > #, one has

PriUR)YZul=Pr(UZ2u|U2h)
=exp[ — b (u?—h?)]

=expl —b(u+h)(u—10)].

It follows that all the typical values of U(k) — %,
such as the expected value or the quantiles, are
smaller than the mean and the quantiles of an
auxiliary exponential variable W) such that
Pr[W° (h) > w] = exp(— 2kb w); this shows that the
mean of U(k) — hissmaller than 1/24b, and it there-
fore tends to zero as % tends to infinity.

Things are very similar in the Gaussian case, but
the algebra is complicated and need not be given
here.

61t definitely necessitates that the ratio Pr(X >
u)/Pr(X > h) be the same when X is the original
variable U or the variable U divided by any positive
number k. For this condition to be satisfied, the
function P(u) = Pr(U > u) must satisfy P(u)/
P(k) = P(ku)/P(kh). Let R = log P be considered
as a function of v = log u; the above requirement
can then be written as

R(v) —R(v°) =R(v-+log %)
—R(v%+log k).

This means that R = log P must be a linear function
of v = log u, which is, of course, the definition of the
hyperbolic law through doubly logarithmic paper, in
the manner of Pareto.
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is very systematically exploited in my
studies of various empirical time series
and spatial patterns. In particular, it
turns out that runs whose duration is
hyperbolically distributed provide a very
reasonable approximation to the “trend”
component of a number of meteorological
time series, and this is, of course, the
motivation of their use in the present
context.

C. PRICES BASED UPON A FORECAST CROP SIZE

With the above preliminaries in mind,
let us resume the crop-forecasting prob-
lem raised in Section ITA, assuming that
the lengths of successive weather runs are
statistically independent’ random wvari-
ables following Pareto’s hyperbolic law.
It is clear that a knowledge of the past
now becomes useful in predicting the
future. The results become especially
simple if one modifies the process slightly
to assume that weather alternates be-
tween ‘‘passive runs” of indifferent be-
havior, and ‘“‘active runs” when it can be
good or bad with equal probabilities.
Then, as long as one is anywhere within
a “‘passive run,” prices will be unaffected
by the number of indifferent days in the
past. But if there have been % good or
bad days in the immediate past, the same
weather is likely to continue for a further
period which has /(o — 1) as its mean.$

7See n. 1.

8 Things are actually slightly more involved: A
positive hyperbolic random variable must indeed
have a minimum value ¢ > 0; therefore, after an
active run has started, its expected future length
jumps up to ¢/(a — 1) and stays there until the
actual run length has exceeded o. Such a fairly
spurious jump will also appear in the exponential
case if good weather could not follow bad weather,
and conversely. One can in fact modify the process
so as to eliminate this jump in all cases, but this
would greatly complicate the formulas for a small
profit.

It is also interesting to derive the forecast value of
E[Y(¢+ T) — Y ()], when T'is finite and the instant
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Recall then that the crop growth due
to one day of good weather decreases the
price by 1¢. A good day following % other
good days will then decrease the price by
the amount [1 + 1/(a — 1)}¢ = [a/(a —
1)]¢, in which the 1/(a — 1)¢ portion is
due to revised future prospects. But,
when good weather finally turns to “in-
different,” the price will go #p by
h/(a — 1), to compensate for unfulfilled
fears of expected future bounties. It
should be noted that 4/(a — 1) is not a
linear function of the known past values
of Y. This implies that the best linear
forecast is not optimal.

F16. 1.—For both the dotted and the bold lines,
the abscissa is time. For the dotted line, the ordinate
is Y (#); for the bold line, the ordinate is Z(#).

As a result, the record of the prices of
our commodity will appear as a random
alternation of three kinds of period, to be
designated as ‘“flat,” ‘“‘convex,” and
“‘concave,” and defined as follows: Dur-
ing flat periods, prices will vary little and
““aimlessly.” During concave periods,
prices will go up by small equal amounts
every day, except that on the last day of
the period they will fall by a fixed propor-
tion of their total rise within the whole
period. Precisely the opposite behavior
will hold for convex periods.

t is the Ath instant of a bad weather run: One readily
finds that

(1/BELY (1+T) — Y (1) ]
=a(a—1)"1[1— (1+4+T/k)=e] —1.

This shows that the convergence of E[Y (¢ + T)] to
its asymptote is fast when % is small, and slow when
h is large,
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Examples of these three kinds of peri-
ods have been shown on the process illus-
trated by Figure 1. If a run of good
weather is interrupted by a single in-
different day, the pattern of prices will
be made up of a ‘“slow fall, a rapid
rise, a slow fall, and a rapid rise.” Up
to a small day’s move, the point of ar-
rival will be the same as if there had
been no indifferent day in between; but
that single day will “break’ the expecta-
tions sufficiently to prevent prices from
falling as low as they would have done in
its absence.

When one nears the end of the growing
season, the above forecasts should natu-
rally be modified to avoid discounting the
weather beyond the harvest. If the neces-
sary correction is applied, one will find
that the final price will precisely corre-
spond to the crop size, determined by the
difference between the number of days of
good and bad weather. However, the
corresponding corrections will not be ex-
amined here.

D. THE MARTINGALE PROPERTY OF
FORECASTED PRICES

The random series Y (¢) is nof a mar-
tingale. To prove this fact, it suffices to
exhibit one set of past values of ¥ for
which the martingale property is not ver-
ified. We shall show that the conditioned
expectation,

E[Y(+ 1) — Y(f), knowing the number %
of past good days],

is non-vanishing.

Proor: Y(¢+ 1) — V() = 0 if and
only if the run of good weather breaks
today, an event of probability [~ —
(b + 1)~%]/h—= ~ a/h. Otherwise, Y (¢ +
1) — Y(t) = —1. Thus, the expectation
of Y(¢+ 1) — Y() equals the proba-
bility that ¥ (¢ 4+ 1) — Y (§) = —1, which
is 1 — a/h, a non-vanishing function of
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the past weather (whose history is fully
represented for our present purposes by
the duration of the current good weather
run).

On the contrary, the price series Z(t) is
a martingale. To begin with, let us as-
sume that % is known and evaluate the
increment

E[Z(t+ 1), given the value of Z(¢) and given
that the number of preceding good
days was exactly 4] — Z(2) .

Let % be sufficiently large to avoid the
difficulties due to existence of a lower
bound to the duration of a weather run.
Then, if today’s weather continues good,
price will go down by an amount equal to
o/(a — 1); we saw that this event has a
probability equal to (k+1)~*/k—=2~1 —
a/k. Suppose, on the contrary, that the
current day is indifferent; this fact alone
implies that the good-weather run is over
and that the advance discounting of the
effect of future weather was unwarrant-
ed. As a result, the price will climb up
abruptly by an amount equal to 4/(a —
1); this event has a probability equal to
a/k. The expected price change is thus
approximately

(1_1 IR S Y

h/a—1 ha—1 Fh D,

which is approximately zero. The rigor-
ous derivation of the expected price
change is more involved, but its result is
simpler, namely: the expected price
change is exactly (and not just approxi-
mately) equal to zero.

Let us now take account of the fact
that one’s actual knowledge of the past
is usually not represented by the value
of & but by some past values Z(#}) of Z().
The number of good days in the current
run is then a random variable H, and
D(h) = Pr (H < k) is a function de-
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termined by the Z(¢.%). It follows that
E[Z(¢t + 1), given the value of Z(f) and the
past prices Z(1%)] = [dD(R)E[Z(t + 1) ,
given the value of Z(f) and the value of %]
= [dD(h)Z(t) = Z(2) .

One shows very similarly that E[Z(t +
T)] = Z(¢) when T exceeds 1, so that
Z(t) is indeed a martingale process.

Variance of Z(t + 1) — Z(t).—If the
number of preceding good days was ex-
actly 4, this variance is equal to

a a \2,a/f kB YV

(-D D)+
which becomes proportional to % when %
islarge. If  is not a known number, but is
generated by a random variable H, con-
ditioned by some known past prices Z(#),
the variance of E(¢t 4+ 1) — Z(#) is pro-
portional to E(H).

(If no past price is known, and 1 <
a < 2, one can show that E(H) is infi-
nite, and one falls back upon the infinite-
variance property of the random walk
with stable Paretian increments—my
original model [6].)

Comment.—We have now, in a sense,
reached the climax of this story, and it
may be good to comment again upon
some observations made in the Introduc-
tion. If the price Z were generated by a
random walk, then, whichever measure
of risk has been adopted, no knowledge of
the past should influence one’s estimate
of the risks involved in trading in Z. If,
on the contrary, Z is generated by the
present martingale, then the only ‘“‘risk”
that is not influenced by the past is con-
stituted by the expectation of Z. A mar-
tingale is thus a “fair game.” But, as #
increases, so do the expected deviations
from the expectation of Z(¢ 4 1) and so
do all other measures of ‘‘risk.” This was
to be expected, since, as % increases, so
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does the relative contribution to Z of
anticipated changes in Y.- Clearly, all
risk-seeking and risk-avoiding traders
will want to know how the market value
of a crop is divided between its present
value and the changes anticipated before
harvest time!

‘Note also the following: If risk-avoid-
ers exceed risk-seekers in influence on the
market, the martingale equality should
be replaced by E[Z(i+ T)] — Z() > 0,
the difference increasing with the vari-
ance of Z(¢ 4+ T). This would have as a
consequence that prices would increase
in time, on the average, especially dur-
ing the periods of high variance. How-
ever, this “tendency toward price in-
crease’” would be of significance only for
traders who seek risk more than does the
average trader on the market.

E. THE DISTRIBUTION OF PRICE CHANGES

This distribution is symmetric, and it
will suffice to derive it when AZ =
Z(t+ 1) — Z(@) is positive or zero. It
will be useful to designate by W’ the
mean duration of an indifferent weather
run, and by W’ the mean duration of
a good or bad weather run. Moreover,
it will be assumed to simplify that W’
and W are both large when measured
in days.

The most significant price changes are

those that satisfy AZ > a/(a — 1). They

occur only on the last days of good
weather runs, so that their total proba-
bility is 1/2 (W’ 4+ W'’). Their precise
distribution is obtained by simply rescal-
ing the law ruling the duration of good
weather runs. One has therefore: For
z> ala — 1),

viceil

1
2(w+wy

Pr(AZ=2) =[

X
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Next, consider the probability that:
Z' = 0. This event occurs when £ is any-
where within a run of indifferent weather;
so that its probability is W'/ (W’ 4+ W")..

‘Finally, AZ = a/(a — 1) when the in-
stant ¢ is within a bad weather run but
is not the last instant in that run. This
event has the probability (W — 1)/
2w+ w. :

The over-all distribution of daily price
change is thus a “‘bell” with two Paretian
tails. It is shaped very much like a stable
Paretian law; in this sense, the present
model may be considered as providing a
further elaboration of the process first
proposed in my [6]. _

It is now safe to mention that the mar-
tingale property of forecast prices holds
independently of the distribution P(x)
of bad weather runs, as long as the runs
are statistically independent. However,
any non-hyperbolic form for P(«) would
predict a marginal distribution of price
change that is in conflict with the evi-
dence brought forth in [6].

F. A MORE INVOLVED AGRICUL-
TURAL COMMODITY

Although still very crude, the preced-
ing model seems more realistic than could
have been expected. A further touch may
be added by taking account of the possi-
bility of crop destruction by a natural
calamity, such as hail. I have found that
at least some among natural calamities
have Paretian distributions. The extent
of such calamities is presumably known
only gradually, and they may therefore
give rise to “‘patterns” similar to those
we have studied above. The main inter-
est of a mixture of several exogenous vari-
ables is, however, that it is unrealistic to
believe that there is proportionality be-
tween the distribution of large price
changes and that of the time intervals
between them. Such a proportionality
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holds in the case of the single trigger
Y (¢), but not in the case of many trig-
gers.

G. BEST LINEAR FORECASTS CANNOT BE
USED TO DEFINE PRICES

I shall state without proof some results
that can be omitted without interrupting
the continuity of the present work. Let
us suppose that, instead of being ruled
by the process Y (f) that we have de-
scribed, the value is ruled by a process
Y*() with the following properties:
AY*(t) = Y( + 1) — V() is a station-
ary Gaussian process whose covariance
function is equal to that of AV (#). Then
the best extrapolate E*[V (* 4 T'), know-
ing Y*(¢) for s < {] is linear. It is also
identical to the best linear extrapolate of
Y*(¢ 4+ T). As T — =, this extrapolate
tends to infinity and therefore it cannot
be used to define a price series Z(¢).

The above example suffices to show
that, in order that price follow a mar-
tingale process, it does not suffice that
price be based upon a forecast of value.

III. PERSISTENCE OF PRICE MOVES FOR
INDUSTRIAL SECURITIES

A. FIRST APPROXIMATION

The arguments of Section II can be
directly translated into terms of “‘funda-
mental analysis” of security prices. Sup-
pose, indeed, that the market value of a
corporation is equal to the expected
value of its future size X, computed tak-
ing account of current and past values
of its size Y (£). If the rules of growth are
of the form that we shall presently de-
scribe, it is meaningful to specify ‘‘the”
expected future size by a single number,
independent of the moment in the future
to which one refers, and independent of
the elements of the past history available
for forecasting. The resulting theory is
again greatly simplified (note also the
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omission of all reference to current yield).

Our rules of growth are such that the
lengths of periods of growth and decline
are random, independent, and Paretian.
Then, the longer a company has grown
straight up, the more the outsiders
should justifiably expect that it will grow
in the future. Its market value Z should
therefore justifiably increase by the mul-
tiple 1 4+ 1/(a — 1) of any additional
growth actually observed for Y (¢). If,
however, the growth of ¥ ever stops suf-
ficiently for all to know it, one should
observe a “‘break of confidence’” and a fall
of Z justifiably equal to the fraction 1/a
of the immediately preceding rise. If the
growth of ¥ is stopped by ‘“breathing
spells,” the growth of Z will have a
sawtooth pattern. If a long growth period
of ¥, ending on a breathing spell, is modi-
fied by adding an additional intermediate
breathing spell, the ultimate value of the
company would be unchanged. But a
single big tooth of Z would be replaced
by two teeth, neither of which attains
equally dizzy heights. In the absence of
breathing spells, price can go up and up,
until presumably the discounted future
growth would have made this corpora-
tion bigger than the whole economy of
its country, necessitating corrections
that will not be examined in this paper.

Most of the further developments of
this model would be very similar to those
relative to the commodity examined in
Section IIC. There is, however, a differ-
ence in that, if a is small, the expected
length of the further growth period may
be so long that one may need to discount
the future growth at some non-vanishing
rate.

B. SECOND APPROXIMATION

Let us now examine the case of an in-
dustrial security whose fundamental
value X (#) follows a process of independ-
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ent increments: either Bachelier’s process
of independent Gaussian increments, or
the process in which the increments are
stable Paretian [6]. In both models, the
rate of change of X may sometimes be
very rapid; in the latter model it may
even be instantaneous. But it will be as-
sumed that the market only follows X ()
through a smoothed-off form ¥ (f) for
which the maximum rate of change is
fairly large but finite. (In some cases, the
establishment of an upper bound #* to
the changes of ¥ may be the consequence
of deliberate attempts to insure ‘“market
continuity.”’)

In order to avoid mathematical com-
plications, let time be discrete,? and the
maximum rate of change #* be known.
It is clear that, whenever the market ob-
serves that V() — V(¢ —1) < u*, it will
be certain that there was no smoothing
off at time ¢ and that X(¢) = YV (¢). If u*
is large enough, the equality X = ¥ will
hold for most values of ¢. Thus the mar-
ket price Z(#) will be equal most of the
time to the fundamental value X(¢).
Every so often, however, one will reach
a point of time where Y (¢) — Y (1 — 1) =
u*, a circumstance that may be due to any
change X(f) — X(¢ — 1) > »* At such
instants, the value of X(f) — X(¢ — 1)
will be greater than the observed value of

9 Continuous-time processes with independent
increments were considered in [6]. In the stable
Paretian case, one finds that X (#) is significantly dis-
continuous in the sense that, if it changes greatly
during a unit time increment, this change is mostly
performed in one big step somewhere within that
time. Therefore, the distribution of large jumps and
that of large changes over finite time increments are
practically identical. In the Gaussian case, on the
contrary, the interpolated process is continuous.
More generally, whenever the process X (f) is inter-
polable to continuous time and its increments have
a finite variance, there is a great difference between
the distributions of its jumps (if any) and of its
changes over finite time increments. This shows that
the case of infinite variance—which in practice

means the Pareto case—is the only one for which the
restriction to discrete time is not severe at all.
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Y() — Y( — 1), and its conditional dis-
tribution will be given by the arguments
of Section IIB; it will therefore critically
depend upon the distribution of X (f) —
X(@—1).

If the distribution of the increments of
X is Gaussian, and #* is large, the dis-
tribution of X(§) — X (¢ — 1), assuming
that it is at least equal to #*, will be very
much clustered near #* and so will also
the distribution of X(¢ + 1) — X (¢ — 1).
There will therefore be a probability very
close to 1 that X(¢ 4+ 1) — X(¢ — 1) be
smaller than 2x* and X(¢ + 1) — X(¢)
smaller than u*. As a result, V(¢ + 1)
will equal X (¢ + 1) and Z(¢ 4 1) will be
matched to X (¢ + 1). In other words, the
mismatch between Z and ¥ will be small
and short-lived in most cases.

Suppose now that the distribution of
AX has two Paretian tails with a < 2. If
V) = Y(¢—1)=wu*whileV (¢ —1) —
Y(t — 2) < »* one knows that X(f) —
X( —1) > »* and has a conditional
expectation independent of the scale of
the original process and equal to ax™/
(a — 1). The market price increment
Z({#) — Z(¢ — 1) should therefore ampli-
fy, by the factor a/(a — 1), the incre-
ment Y (¢) — Y(¢ — 1) of the smoothed-
off fundamental value. Now proceed to
time ¢ + 1 and distinguish two cases: If
Y+ 1) — Y() < u* the market will
know that X(¢ + 1) = Y (¢ + 1). Then
the price Z(¢t + 1) will equal X(¢ + 1) =
Y( + 1), thus falling from the inflated
anticipation equal to X(¢t — 1) + au™/
(@ —1). But if Y@+ 1) — Y(§) = u™*,
the market will know that X (¢ + 1) —
Xt—1)=Y(¢— 1)+ 2u* It follows
that the conditioned distribution of
the difference X(f) — X(¢ — 1) will be
very close to a Paretian law truncated to
values greater than 2% *. Thus the expect-
ed value of X(¢ + 1)—which is also the
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market price Z(¢ 4+ 1)—will be equal to
Z(t — 1)+ 2u*a/(a — 1) = Z(t) + u*a/
(a —1).

After Y (¢) has gone up, # times in suc-
cession, in steps equal to #*, the value
of ZG+n—1)—Z¢—1) will ap-
proximately equal #u*a/(a — 1). Even-
tually, however, one will reach a value of
nsuchthat V(¢ +n — 1) =Y —1) <
nu*, which implies that X(¢ +» — 1) —
X(@ — 1) < nu* and the market price
Z(t+n — 1) will then crash down to
X+ n — 1), losing in one swoop all
its excessive growth.

As the size of the original jump of X
increases, the number of time intervals in-
volved in smoothing also increases, and
correction terms must be added.

Let us now discuss qualitatively the
case where the value of the threshold »™*
is random. Then, after the market ob-
serves a change of Y (¢), it will question
it to determine whether it is a fully com-
pleted change of fundamental conditions,
equal to a change of X (f), or the begin-
ning of a large change. In the first case,
the motion need not “persist,” but it will
persist in the second case. This naturally
involves a test of statistical significance:
A few changes of ¥ in the same direction
may well “pass’ as final moves, but a
long run of rises should be interpreted
as due to a ‘“‘smoothed-off”” large move.
Thus, the following more complicated
pattern will replace the gradual rise fol-
lowed by fast fall that was earlier ob-
served: The first few changes of Z will
equal the changes of ¥, then Z will jump
to such a value that its increase from the
beginning of the rise equals a/(a — 1)
times the increase of ¥'; whenever the rise
of ¥ stops, Z will fall to ¥'; whenever the
rise of ¥ falters, and then resumes, Z will
fall to ¥ and then jump up again.

In a further generalization, one may
consider the case where large changes of
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Y are gradually transmitted with proba-
bility ¢ and very rapidly in other cases.
Then the distribution of the changes of
Z will be a mixture of the distribution
obtained in the previous argument and of
the original distribution of changes of ¥
however, the Paretian character is pre-
served in such a mixture. See [5].

C. MORE COMPLEX ECONOMIC MODELS

It is natural to examine the case when
there is more than one “tracking” mech-
anism of the kind examined so far. It
may for example happen that Z(f) at-
tempts to predict the future behavior of
a smoothed-out form ¥ of X(f), while
X (#) itself attempts to predict the future
behavior of some other function X*(%).
This would lead to zigzags larger than
those observed so far. Therefore, for the
sake of stability, it will be very impor-
tant in every case to ascertain whether
the driving function Y () is a smoothed-
off fundamental economic quantity or is
already influenced by forecasting specu-
lation.

Suppose now that two functions Z;(#)
and Z(#) attempt to track each other,
with lags in each case. The zigzags will get
increasingly amplified, as in the diver-
gent case of the cobweb phenomenon.
All this hints at the difficulty of studying
in detail the process by which ‘“the mar-
ket is made” through the interactions
among a large number of traders; it
also underlines the necessity of making a
detailed study of the function of ““insur-
ing the continuity of the market” that is
assigned to the specialist.

IV. ADDITIONAL COMMENTS
A. THE VALUATION OF OIL FIELDS
The use that was made of the results
of Section ITB may also be illustrated by

the example of oil fields in a new country.
One knows ‘‘intuitively’” that there



254

is a high probability that the total oil
reserves in this country are very small;
but, if it turns out to be oil rich, its re-
serves would be very large. This means
that the a priori distribution of the re-
serves X is likely to have a big ‘“‘head”
near x = 0 and a long ‘‘tail”’; indeed, that
distribution is hyperbolic. Let us now
consider a forecaster who only knows the
partial value, Y (#), of the recognized re-
serves at time ¢. As long as the reserves
have not been completely explored, their
expected market value Z(f) should be
equal to a¥(#)/(a — 1): The luckier the
explorers have been in the past, the more
they should be encouraged in digging or
the more they should expect to have to
pay for digging rights in the immediate
neighborhood of a recognized source.
Eventually, however, ¥ (¢) will reach X
and it will then cease to increase; at this
very point, Z(#) will tumble down to Y (¢),
thus decreasing by Y (£)/(a — 1).

If the distribution of X had been expo-
nential, Z(f) would always exceed ¥ (¢) by
an amount independent of ¥ (£) and equal
to the market value of entirely unex-
plored territory. If ¥ (f) had been a trun-
cated Gaussian variable, the premium for
expected future findings would have
rapidly decreased with 1/V(¢).

It would be interesting to study actual
forecasts in the light of the triple alterna-
tive that I have sketched. But the exam-
ple of oil fields was mainly brought in
to further demonstrate how the variation
of prices can be affected by certain wn-
avoidable delays in the ‘“transmission of
information about the physical world.”

B. FACETIOUS APPLICATIONS

The simple mathematical result of Sec-
tion IIB may be used to construct vari-
ous facetious ‘‘paradoxes” related to the
concept of expectation; with some trepi-

THE JOURNAL OF BUSINESS

dations, two examples will now be pre-
sented.

First paradox: Why does anyone who
stops young stop in the middle of a promis-
ing career? According to certain results of
A. Lotka, the distribution of the number
of scientific papers due to any single
author is Paretian with exponent 2. As-
sume, therefore, for the sake of argu-
ment, that a ‘‘scientific career” is some-
thing the duration of which is unpredict-
able and hence can be considered as being
random and Paretian with exponent 2:
This would mean that most people have
a very short career but a few have very
long careers indeed. Then, however long
a career has already proceeded, it should
be expected to continue for an equal ad-
ditional time span. Since all careers even-
tually stop, they may be considered as
breaking off half of their promise. The
only way of avoiding such apparent dis-
appointment is to live to be so old that
age corrections must be added in the
computation of the expected career.

The parable of the receding shore. ‘‘Once
upon a time, there was a country called
the Land of Ten Thousand Lakes, and
those landmarks were affectionately
known to some of its inhabitants as Big-
gest, Second Biggest, . . ., rth Biggest,
etc.,down to 10,000th Biggest. The widest
was a sea 100 miles across, the width of
the rth Biggest was 100/4/7, so that the
smallest had a width of only 1 mile. But
each lake was always covered with a haze
that made it impossible to see across and
thus identify its width. One would, of
course, find out if one could discover its
name; but the land was poorly mapped
and poorly marked, and had few inhabit-
ants whom the traveler could ask for in-
structions. The people of that land were
expert at measuring distances, however;
they also knew all about the computation
of averages and were great believers in
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expected utilities. They knew, therefore,
that as one of them stood on an unknown
shore, he had before him a stretch of
water of expected width equal to 2 miles.
He could very well travel 1 mile to reach
the center of “the’” expected lake; but he
could never go beyond this point! Sup-
pose, indeed, that he succeeded in sailing
forth to a new total distance just short of
100/vr miles. In the meantime, the
other shore would have “moved on,” to a
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new mean distance from him equal pre-
cisely to 100/v7. It is clear therefore
that those Lakes were ruled by Spirits
who would never let them be crossed by
a stranger. However far the traveler
might sail, the Spirits would spread the
lake ever farther, and the stranger would
always remain right in the middle of
water; his boldness should eventually be
punished by death, but all travelers were
eventually reprieved by a special grace.”
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